

Plans for the ILC cryomodule meeting at CERN 16 - 17 January 2006

Harry Carter and Tom Peterson, Fermilab SMTF video conference meeting 5 January 2006

TTF cryomodule

I L C International Line Module end

CERN meeting purpose

- Type IV Cryomodule (T4CM) design team formation and technical discussions
- Module issues collected by working groups at meetings, including but not limited to
 - SLAC (14 16 Oct 2004)
 - KEK (13 15 Nov 2004)
 - DESY (6 8 Dec 2004)
 - Snowmass (August 2005)
 - SMTF collaboration meeting (5 7 Oct 2005)
- Workshop format -- few formal talks

CERN meeting goals

Technical

- Definition of what a T4CM is
- Identification of a comprehensive list of tasks to be accomplished in working toward the T4CM design

Organizational

- Formation of an international T4CM design team
- Identify who will do what
- Establish a timeline for T4CM design completion
- Future meetings---discuss when, where, frequency, etc.

Additional goals from Chris Adolphsen--RDR module and cryosystem definition

- Length of cryomodules with and without quads
- External support of cryomodules (e.g. from the floor or ceiling)
- Beamline and insulating vacuum segmentation
- Cryogenic maintenance length and the additional space required between segments
- Space required to convert from cold to warm sections
- Refrigerator spacing, capacities and space requirements

5 January 2006 SMTF Meeting

BCD/RDR versus Type IV

- The module design for the RDR should be wellunderstood and conservative, in order to have confidence in the cost estimate
- Type IV is a new development, requires design effort, consideration of various options, over a time period of a few years
- These efforts diverge at some point -- BCD/RDR is a fixed reference while we move on with type IV design development
- We will respond to the requests from Chris

Preliminary draft agenda

- Meeting Agenda:
 - Monday, January 16

•	Introduction and meeting overview	H. Carter
•	Organizational issues	H. Carter

- Lunch
- First draft list of technical issues and tasks T. Peterson Technical Discussions all
- Tuesday, January 17
 - Technical Discussions all
 - Lunch
 - Continuation of Technical Discussions all
 - Summary and closeout
 - Plans for next meeting
 - Adjourn
- ILC cryogenic system meeting on Wednesday, January 18
- Many thanks to our CERN colleagues for hosting this meeting on very short notice
 - Jean-Pierre Delahaye
 - Vittorio Parma

ILC Americas T4CM Design Team

- Task Manager ("integrator"): T. Peterson
 - Task engineers and scientists:

D. Mitchell: Mechanical design

T. Nicol: Cryostat & supports

M. McGee: Vibration measurement & analysis

S. Tariq: FEA analysis of mechanical

components (tuners, cavities, etc.)

J. Tompkins: SC quadrupole & correctors

V. Kashikin: SC quadrupole & correctors

J. Weisend: Cryostat & cryogenics

K. Jobe: Cryostat & cryogenics

- Task Designer(s): Contract Designers
- Task Scientific Input: H. Edwards / S. Mishra/ K. Ranjan/ N. Solyak/ Paul Lebrun / H. Padamsee

Deliverable: Complete T4CM drawing package ready for

procurement by end of CY07

Draft list of technical issues and tasks for discussion at CERN

- Design the intercavity connecting flange and bolting arrangement, detail the new spacing.
- Decide on pressure drop criteria and pipe sizes for the modules
- Modify the slow tuner design to allow closer cavity-to-cavity spacing
- Modify the fast tuner design for proper piezo function

Technical issues and tasks (page 2)

- Design the support details for locating quad/corrector/BPM package under center post, but still hung from 300 mm tube
- Select some possible quadrupole current leads and work out configurations for integration into module.
- Design module end to accommodate the input coupler at the far end of the cryostat
- Module-to-module interconnect design
- Vibrational analysis of the quad and cavity support structure

Technical issues and tasks (page 3)

- Design for stability with shipping, analysis of shipping restraints and loads
- Develop module test plans and module component test plans
- Design of instrumentation for installation into the module
- Possible incorporation of a segment-to-segment "spool" piece
- Conceptual design of separate quad cryostat
- Active mover design

Some critical open design issues

- Quad/corrector/BPM package is a major unknown right now and goes into the heart of the module
- Tuner details, slow and fast, but especially fast tuner
- Vibrational analysis, which will be compared to measurements for verification of the model for future design work
- Development of module and module component test plans
- Verification of cavity positional stability with thermal cycles
- Design of test instrumentation for the module
- Robustness for shipping, analysis of shipping restraints and loads, shipping specifications
- Active quad movers(?) A complication

5 January 2006 Tom Peterson 14
SMTF Meeting

Type IV probable schedule

- Design module -- 12 24 months (2006 2007)
 - Magnet/BPM package
 - Tuners, etc.
 - Integrate into module design
- Build and test -- 12 18 months (2007 2008)
 - In addition to module, need module test stand and test facility!
- Total 2 to 3 1/2 years, depending on scope of work and availability of resources.